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Background



Quantum Entanglement

Entanglement ≃ cannot be decomposed into tensor products of the local basis

2 qubit: |0𝐴0𝐵⟩ + |1𝐴1𝐵⟩√
2

(≠ |𝜓𝐴⟩ ⊗ |𝜓𝐵⟩)

3 qubit: |0𝐴0𝐵0𝐶⟩ + |1𝐴1𝐵1𝐶⟩√
2

,  |1𝐴0𝐵0𝐶⟩ + |0𝐴1𝐵0𝐶⟩ + |0𝐴0𝐵1𝐶⟩√
3

⋮

Entanglement entropy is a way to evaluate the strength of bipartite entanglement.

Partitioning the entire system into system (sys) and environment (env), we have

𝜌sys = Trenv|Ψ⟩⟨Ψ|, 𝑆EE = − Trsys[𝜌sys ln 𝜌sys].

The larger 𝑆EE, the more information is lost in the environment.
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The Black Hole Information Paradox
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Page curve

Hawking: Information would be lost 😭 / Page: Information would be preserved 🧐
Page curve: sys = the Hawking radiation, env = BH

𝑉𝑆/𝑉

𝑆EE

0 1/2 1

Hawking’s expectation

Page’s rebuttal

(= Page curve)

Volume ratio of the Hawking radiation

Page’s consideration:

The entire dynamics should be unitary and maximally chaotic.

⇒  |Ψ⟩ ∼ 𝑈|0⟩, where 𝑈  is a random unitary matrix.
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Typical Entanglement

|Ψ⟩

ℋsys ⊗ ℋenv

|Ψ⟩
System Environment

• Typical = uniformly random sampling on the entire Hilbert space ∼ Haar-random

• Entanglement spectrum = eigvals of the reduced density matrix 𝜌sys = Trenv|𝜓⟩⟨𝜓|
• Typical entanglement = entanglement of uniformly random-sampled state

The random matrix theory (RMT) is useful to evaluate typical entanglement. (Page, 1993;

Sánchez-Ruiz, 1995; Sen, 1996).

Let’s see how it works.
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Laguerre Unitary Ensemble of Random Matrices

Preparing Haar-random pure state from the entire Hilbert space:

|Ψ⟩ = ∑
sys,env

𝑊sys,env|sys,env⟩,  where  i.i.d. 𝑊sys,env ∼ 𝒞𝒩(0, 1).

|Ψ⟩ ∼ Haar ⇔ 𝜌sys = 𝑊 𝑊 † .

(Zyczkowski and Sommers, 2001; Nechita, 2007)

⇒ 𝜌sys follows the Laguerre unitary ensemble (LUE) of RMT.

The joint probability 𝑝 distribution of eigenvalues {𝜆𝑖} of 𝜌sys is

𝑝(𝜆1, …, 𝜆𝑚) ∝ ∏
𝑚

𝑖=1
𝜆𝑛−𝑚

𝑖 𝑒−𝜆𝑖 ∏
1≤𝑖<𝑗≤𝑚

|𝜆𝑖 − 𝜆𝑗|2.
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Time Reversal Symmetry and Threefold Way of Laguerre Ensemble

|Ψ⟩ = ∑
sys,env

𝑊sys,env|sys,env⟩,  where  i.i.d. 𝑊sys,env ∼ 𝒞𝒩(0, 1)

What if we change complex random variables to real random variables?

|Ψ⟩ and 𝜌sys obtain Time Reversal Symmetry (TRS) of 𝒯 = 𝐾:

|Ψ⟩ → 𝒯|Ψ⟩ = 𝐾|Ψ⟩ = |Ψ⟩,

𝜌sys → 𝒯𝜌sys𝒯−1 = 𝐾𝜌sys𝐾 = 𝜌sys = 𝜌sys.

Note that there is the other & nonequivalent kind of TRS!

Time Reversal Symmetry

Integer spin: 𝒯2
+ = +𝟙.  ex. 𝒯+ = 𝐾

Half-integer spin:  𝒯2
− = −𝟙.  ex. 𝒯− = 𝜎𝑦𝐾

Let’s look at the eigenvalue statistics of the density matrix with TRS.
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Time Reversal Symmetry and Threefold Way of Laguerre Ensemble

𝑝(𝜆1, …, 𝜆𝑚) ∝ ∏
𝑚

𝑖=1
𝜆

𝛽
2 (𝑛−𝑚+1)−1
𝑖 𝑒−𝛽

2𝜆𝑖 ∏
1≤𝑖<𝑗≤𝑚

|𝜆𝑖 − 𝜆𝑗|𝛽

No TRS: 𝛽 = 2.

Imposing TRS: 𝒯𝜌sys𝒯−1 = 𝜌sys allows 𝛽 = 1 and/or 𝛽 = 4.

Threefold way of Laguerre ensemble

𝒯2
+ = +𝟙 No TRS 𝒯2

− = −𝟙
(𝒯+ ≃ 𝐾) (𝒯− ≃ 𝜎𝑦𝐾)

𝛽 = 1 𝛽 = 2 𝛽 = 4
Laguerre orthogonal, unitary, symplectic ensemble

LOE LUE LSE
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Kramers’ theorem and prohibition of 𝒯2
− = −𝟙 TRS eigenstate

TRS for 𝜌sys: 𝒯𝜌sys𝒯−1 = 𝜌sys always has solutions. However, TRS for |Ψ⟩ is ill-defined:

Theorem :  𝒯2
− = −𝟙 TRS cannot have the eigenstate 𝒯−|Ψ⟩ = |Ψ⟩.

Proof :  Time reversal operator 𝒯 is anti-unitary, thus ⟨𝒯−𝑎|𝒯−𝑏⟩ = ⟨𝑎|𝑏⟩.

⟨𝜓|𝒯−𝜓⟩ = ⟨𝒯−𝜓|𝒯2
−𝜓⟩ = ⟨𝒯2

−𝜓|𝒯−𝜓⟩ = −⟨𝜓|𝒯−𝜓⟩

This implies ⟨𝜓|𝒯−𝜓⟩ = 0 for an arbitary state, thus |𝜓⟩ is orthogonal to 𝒯|𝜓⟩. ∎

𝒯2
+ = +𝟙 No TRS 𝒯2

− = −𝟙
(𝒯+ ≃ 𝐾) (𝒯− ≃ 𝜎𝑦𝐾)

𝛽 = 1 𝛽 = 2 𝛽 = 4
Laguerre orthogonal, unitary, symplectic ensemble

LOE LUE LSE
𝒯|Ψ⟩ = |Ψ⟩ : real vector complex vector unknown!
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Key Questions and Solutions



Q1. Possible to construct 𝜌sys ∼ LSE ?

Q2. Beyond threefold way if general symmetries?



Q1. Possible to construct |Ψ⟩ whose 𝜌sys ∼ LSE ?

A1. Yes, by fractionalization of TRS.

Q2. Beyond threefold way if general symmetries?

A2. Never. Direct sum of threefold way.



1. Exploring the LSE-Realizing System

Requirement 𝒯+𝜌sys𝒯−1
+ = 𝜌sys 𝒯−𝜌sys𝒯−1

− = 𝜌sys

Existence of pure state Yes, 𝒯+|Ψ⟩ = |Ψ⟩ No, 𝒯−|Ψ⟩ ≠ |Ψ⟩

Pure state real vector ???

⇓

Fractionalization of TRS

𝒯2 = [𝒯sys ⊗ 𝒯env]
2 = +𝟙

↙  𝒯 = Υ(𝒯sys ⊗ 𝒯env)Υ† ↘

𝒯2
sys = −𝟙

                         
𝒯2

env = −𝟙

• Υ fractionalizes TRS pure state of LOE |Ψ⟩.
• We found Υ = 1−i

2 [𝟙4 − i𝜎𝑦 ⊗ 𝜎𝑦] and proved Υ|Ψ⟩ follows LSE.
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1. Exploring the LSE-Realizing System

Fractionalization of TRS: Υ(𝒯+ ⊗ 𝒯+)Υ† = 𝒯− ⊗ 𝒯−

|Ψ⟩
𝒯+ 𝒯+

=

|Ψ⟩

|Ψ⟩

𝒯+ 𝒯+

Υ

Υ
Υ† =

|Ψ⟩

𝒯− 𝒯−

Υ
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2. Imposing General (Finite) Symmetries

• Groups (mathematics) describe symmetries.

Group 𝐺
Set with an assosiative multiplication. Identity and inverse exist for every elements.

‣ Examples: ℤ𝑚,  ℤ𝑚 × ℤ𝑛,  𝐶3𝑣,  𝑄8,   ℤ𝒯
2  (TRS), ⋯

• Constraints to the states / operators are given by unitary-antiunitary representations.

Unitary-antiunitary representation 𝐷 of 𝐺
𝐷(𝑎)𝐷(𝑏) = 𝐷(𝑎𝑏)

for ∀𝑎, 𝑏 ∈ 𝐺.

• Projective representations describe anomalous symmetries and (1+1)D SPT phases.

Projective representation 𝒟 of 𝐺
𝒟(𝑎)𝒟(𝑏) = 𝜔(𝑎, 𝑏)𝒟(𝑎𝑏)

for ∀𝑎, 𝑏 ∈ 𝐺,  𝜔 : 𝐺 × 𝐺 → 𝑈(1).
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2. Imposing General (Finite) Symmetries

Symmetry Fractionalization

∀𝑔, 𝑔′ ∈ 𝐺,  𝐷(𝑔)𝐷(𝑔′) = 𝐷(𝑔𝑔′) (regular rep)

↙ Ω(𝐷 ⊗ 𝐷)Ω† = 𝒟 ⊗ 𝒟′ ↘

𝒟(𝑔)𝒟(𝑔′) = 𝜔(𝑔, 𝑔′)𝒟(𝑔𝑔′)
 

𝒟′(𝑔)𝒟′(𝑔′) = 𝜔(𝑔, 𝑔′)𝒟′(𝑔𝑔′)

The eqiuvalence relation between reps is defined by phase modulation;

𝒟new(𝑔) = 𝑒i𝜙(𝑔)𝒟(𝑔)

Then, reps are classified by 2nd order group cohomology 𝐻2(𝐺, 𝑈(1)).

• Regular reps of different classes lead to different irreducible decompositions.
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2. Imposing General (Finite) Symmetries

• Groups can be extended by (semi)direct product.

Direct product and semidirect product of groups

Direct: 𝐺 = 𝐺1 × 𝐺2, (𝑎1, 𝑎2)(𝑏1, 𝑏2) = (𝑎1𝑏1, 𝑎2𝑏2)
Semidirect: 𝐺 = 𝐺1 ⋊ 𝐺2, (𝑎1, 𝑎2)(𝑏1, 𝑏2) = (𝑎1𝑓𝑎2

(𝑏1), 𝑎2𝑏2)

• Any unitary-antiunitary reps can be decomposed into a set of irreducible reps.

Irreducible representations

Reps for which all the elements in a unitary transformation cannot be further

decomposed into direct sums at the same time are called an irreducible reps.

• The Regular representation can be chosen for the most natural rep.

Regular representation

𝐷(𝑔) = [𝛿(𝑔𝑖 𝑔 𝑔−1
𝑗 )] where 𝛿(𝑒) = 1 and otherwise 𝛿(𝑔) = 0
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2. Imposing General (Finite) Symmetries

• We consider random 𝐺-symmetric states |Ψ⟩, where 𝐺 = 𝐺0 or 𝐺0 ⋊ ℤ𝒯
2 .

𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔)

|Ψ⟩

=

|Ψ⟩

• We concentrate onsite symmetries s.t. the entanglement spectrum is not changed.

𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔) 𝐷(𝑔)

𝑈†

𝑈

𝑈†

𝑈
= 𝐷(𝑔) 𝐷(𝑔)

• Fractionalization of 𝐺0 by Ω can be done independently of ℤ𝒯
2 .

𝐷(𝑔) 𝐷(𝑔)

Ω

Ω†
= 𝒟(𝑔) 𝒟(𝑔)
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General Setup

𝑃

𝒰

𝑙 𝑟𝐿 𝑅

Ω
Υ

The considered symmetries are 𝐺 = 𝐺0 or  𝐺0 ⋊ ℤ𝒯
2  (𝐺0: unitary, ℤ𝒯

2 : anti-unitary).

• 𝐺0: Green circles.
‣ 𝑙, 𝑟: |𝐺0|-dimensional qudit (Finite. The regular rep of 𝐺0: ⟨𝑔|𝑔′⟩ = 𝛿𝑔,𝑔′ )
‣ 𝑃 : Projection of |𝐺0|2-dim space 𝑙 ∪ 𝑟 onto 𝐺0-symmetric |𝐺0|-dim basis below:

∀𝑔 ∈ 𝐺0,  |𝜓𝑔⟩ = 1
√|𝐺0|

∑
ℎ∈𝐺0

|ℎ𝑔⟩|ℎ⟩. (𝐷(𝑔) ⊗ 𝐷(𝑔)|𝜓𝑔⟩ = |𝜓𝑔⟩).

• ℤ𝒯
2 : Blue circles = 2-dimensional cuts of each subsystem (only when Υ is necessary).
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General Setup

𝑃

𝒰

𝑙 𝑟𝐿 𝑅

Ω
Υ

• Randomness: 𝒰 ∼ Haar measure on the projected 𝑑𝐿𝑑𝑅|𝐺0|-dimensional space:

|Ψ⟩ = ∑
𝐿,𝑔∈𝐺0,𝑅

𝑐𝐿,𝑔,𝑅|𝐿⟩|𝜓𝑔⟩|𝑅⟩ = 1
√|𝐺0|

∑
𝐿,𝑔𝑙,𝑔𝑟,𝑅

𝑐𝐿,𝑔−1
𝑟 𝑔𝑙,𝑅|𝐿⟩|𝑔𝑙⟩|𝑔𝑟⟩|𝑅⟩

• Fractionalization: Ω fractionalizes 𝐺0, Υ fractionalizes ℤ𝒯
2 :

Ω = ∑
𝑔𝑙,𝑔𝑟

𝜔(𝑔𝑟, 𝑔−1
𝑟 𝑔𝑙)|𝑔𝑙, 𝑔𝑟⟩⟨𝑔𝑙, 𝑔𝑟|,  Υ = 1 − i

2
(𝟙4 − i𝜎𝑦 ⊗ 𝜎𝑦).
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Results and Conclusion



Direct Sum into the Threefold Way

Entanglement-spectrum statistics of 𝐺 = 𝐺0 is

⨁
𝛼

[
𝟙𝑑𝛼

𝑑𝛼
⊗ 𝐋𝐔𝐄𝑑𝐿𝑑𝛼×𝑑𝑅𝑑𝛼

𝛼 ],

On the other hand, that of 𝐺 = 𝐺0 ⋊ ℤ𝒯
2  is

[⨁
𝛼:𝑅+

𝟙𝑑𝛼

𝑑𝛼
⊗ 𝐋𝐎𝐄𝑑𝐿𝑑𝛼×𝑑𝑅𝑑𝛼

𝛼 ] ⊕ [⨁
𝛼:𝑅0

𝟙2𝑑𝛼

𝑑𝛼
⊗ 𝐋𝐔𝐄𝑑𝐿𝑑𝛼×𝑑𝑅𝑑𝛼

𝛼 ] ⊕ [⨁
𝛼:𝑅−

𝟙𝑑𝛼

𝑑𝛼
⊗ 𝐋𝐒𝐄𝑑𝐿𝑑𝛼×𝑑𝑅𝑑𝛼

𝛼 ].

Entanglement-spectrum statistics of random symmetric states is

always able to be decomposed into the direct sum of the threefold way¹.

¹This result is also the Laguerre version of Dyson’s Gaussian threefold way (1962).
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Conclusion

𝑃

𝒰

𝑙 𝑟𝐿 𝑅

Ω
Υ

Until our work

• The setup which follows LSE have been elusive.

What this work reveraled are:

• The LSE setup can be constructed by fractionalizing TRS of the LOE setup.

• Extended the setup to general symmetries.

• Entanglement-spectrum statistics is direct sum of the threefold way.
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Supplemental Materials



Some additional information on group reps

• An irrep is either one of real, complex, or pseudoreal.

• We consider the cases 𝐺 = 𝐺0 or 𝐺0 ⋊ ℤ𝒯
2 .

• For 𝐺 = 𝐺0 ⋊ ℤ𝒯
2 , one can define the indicator to know irreps real, complex, or

pseudoreal.

Indicator of irrep

𝜄𝛼 = 1
|𝐺0|

∑
𝑔∈𝐺0

Tr[𝒟𝛼(𝑔)𝒟𝛼(𝑔)],

𝜄 =
{{
{
{{1 : real

0 : complex
−1 : pseudoreal

The cocycle (=cohomology class) can be decoupled 𝜔 = 𝜔𝐺0
𝜔ℤ𝒯

2
.

• 𝑅± = set irreps that satisfies 𝜄 = ±𝜔(𝑡, 𝑡). 𝜔(𝑡, 𝑡) = 1(−1) in the absent (present) of Υ.
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