Threefold Way for Typical Entanglement

Haruki Yagi¹, Ken Mochizuki^{1,2}, Zongping Gong¹

1 Department of Applied Physics, Graduate School of Engineering, The University of Tokyo 2 Nonequilibrium Quantum Statistical Mechanics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research

arXiv:2410.11309

Keywords

Physics: typical entanglement, symmetry fractionalization, SPT phases **Mathematics**: random matrices, unitary-antiunitary representations of groups

Background

Quantum Entanglement

Entanglement \simeq cannot be decomposed into tensor products of the local basis

$$\begin{array}{ll} 2 \mbox{ qubit: } & \frac{|0_A 0_B \rangle + |1_A 1_B \rangle}{\sqrt{2}} & (\neq |\psi_A \rangle \otimes |\psi_B \rangle) \\ 3 \mbox{ qubit: } & \frac{|0_A 0_B 0_C \rangle + |1_A 1_B 1_C \rangle}{\sqrt{2}}, \ \frac{|1_A 0_B 0_C \rangle + |0_A 1_B 0_C \rangle + |0_A 0_B 1_C \rangle}{\sqrt{3}} \\ & \vdots \end{array}$$

Entanglement entropy is a way to evaluate the strength of bipartite entanglement. Partitioning the entire system into system (**sys**) and environment (**env**), we have

$$\rho_{\rm sys} = {\rm Tr}_{\rm env} |\Psi\rangle \langle \Psi|, \quad S_{\rm EE} = - \, {\rm Tr}_{\rm sys} \big[\rho_{\rm sys} \ln \rho_{\rm sys} \big]. \label{eq:rhoss}$$

The larger $S_{\rm EE'}$ the more information is lost in the environment.

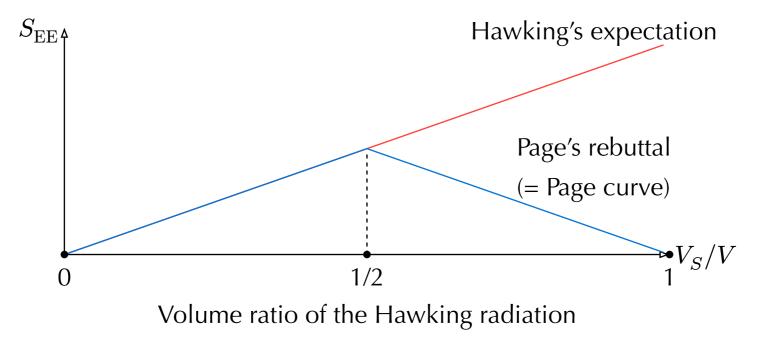
The Black Hole Information Paradox

2

4

Page curve

Hawking: Information would be lost 📦 / Page: Information would be preserved 🧐 Page curve: **sys = the Hawking radiation, env = BH**

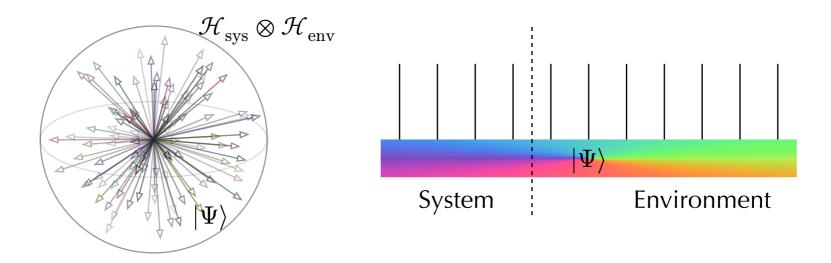


Page's consideration:

The entire dynamics should be **unitary** and **maximally chaotic**.

 $\Rightarrow |\Psi\rangle \sim U|0\rangle$, where *U* is a random unitary matrix.

Typical Entanglement



- **Typical** = **uniformly random** sampling on the entire Hilbert space \sim Haar-random
- Entanglement spectrum = eigvals of the reduced density matrix $\rho_{sys} = Tr_{env} |\psi\rangle \langle \psi|$
- **Typical entanglement** = entanglement of uniformly random-sampled state

The random matrix theory (RMT) is useful to evaluate typical entanglement. (Page, 1993; Sánchez-Ruiz, 1995; Sen, 1996).

Let's see how it works.

Laguerre Unitary Ensemble of Random Matrices

Preparing Haar-random pure state from the entire Hilbert space:

 $|\Psi\rangle = \sum_{\rm sys, env} W_{\rm sys, env} |{\rm sys, env}\rangle, \ \ {\rm where} \quad {\rm i.i.d.} \ W_{\rm sys, env} \sim \mathcal{CN}(0,1).$

$$|\Psi
angle \sim {
m Haar} \Leftrightarrow
ho_{
m sys} = egin{arrl} W & W^{\dagger} \ W^{\dagger} \end{array}$$

(Zyczkowski and Sommers, 2001; Nechita, 2007)

 $\Rightarrow \rho_{sys}$ follows the *Laguerre unitary ensemble (LUE*) of RMT.

The joint probability *p* distribution of eigenvalues $\{\lambda_i\}$ of ρ_{sys} is

$$p(\lambda_1,...,\lambda_m) \propto \prod_{i=1}^m \lambda_i^{n-m} e^{-\lambda_i} \prod_{1 \leq i < j \leq m} |\lambda_i - \lambda_j|^2.$$

Time Reversal Symmetry and Threefold Way of Laguerre Ensemble

$$|\Psi\rangle = \sum_{\rm sys,env} W_{\rm sys,env} |{\rm sys,env}\rangle, \ \ {\rm where} \quad \ {\rm i.i.d.} \ W_{\rm sys,env} \sim \mathcal{CN}(0,1)$$

What if we change *complex* random variables to *real* random variables?

 $|\Psi\rangle$ and $\rho_{\rm sys}$ obtain **Time Reversal Symmetry** (TRS) of $\mathcal{T} = K$:

$$\begin{split} |\Psi\rangle &\to \mathcal{T} |\Psi\rangle = K |\Psi\rangle = |\Psi\rangle, \\ \rho_{\rm sys} &\to \mathcal{T} \rho_{\rm sys} \mathcal{T}^{-1} = K \rho_{\rm sys} K = \overline{\rho_{\rm sys}} = \rho_{\rm sys}. \end{split}$$

Note that there is the other & nonequivalent kind of TRS!

Time Reversal SymmetryInteger spin: $\mathcal{T}_{+}^{2} = +\mathbb{1}$. ex. $\mathcal{T}_{+} = K$ Half-integer spin: $\mathcal{T}_{-}^{2} = -\mathbb{1}$. ex. $\mathcal{T}_{-} = \sigma_{y}K$

Let's look at the eigenvalue statistics of the density matrix with TRS.

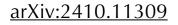
Time Reversal Symmetry and Threefold Way of Laguerre Ensemble

$$\begin{split} p(\lambda_1,...,\lambda_m) \propto \prod_{i=1}^m \lambda_i^{\frac{\beta}{2}(n-m+1)-1} e^{-\frac{\beta}{2}\lambda_i} \prod_{1 \leq i < j \leq m} |\lambda_i - \lambda_j|^{\beta} \\ & \text{No TRS: } \beta = 2. \end{split}$$

Imposing TRS: $\mathcal{T}\rho_{\text{sys}}\mathcal{T}^{-1} = \rho_{\text{sys}}$ allows $\beta = 1$ and/or $\beta = 4$.

Threefold way of Laguerre ensemble

$$\begin{array}{cccc} \mathcal{T}^2_+ = +\mathbb{1} & \text{No TRS} & \mathcal{T}^2_- = -\mathbb{1} \\ & (\mathcal{T}_+ \simeq K) & & (\mathcal{T}_- \simeq \sigma_y K) \\ \beta = 1 & \beta = 2 & \beta = 4 \end{array}$$
Laguerre **orthogonal**, **unitary**, **symplectic** ensemble
$$\begin{array}{cccc} \textbf{LOE} & \textbf{LUE} & \textbf{LSE} \end{array}$$



Kramers' theorem and prohibition of $\mathcal{T}_{-}^{2} = -\mathbb{1}$ TRS eigenstate

TRS for ρ_{sys} : $\mathcal{T}\rho_{sys}\mathcal{T}^{-1} = \rho_{sys}$ always has solutions. However, TRS for $|\Psi\rangle$ is ill-defined:

Theorem: $\mathcal{T}_{-}^{2} = -\mathbb{1}$ TRS cannot have the eigenstate $\mathcal{T}_{-}|\Psi\rangle = |\Psi\rangle$.

Proof: Time reversal operator \mathcal{T} is anti-unitary, thus $\langle \mathcal{T}_a | \mathcal{T}_b \rangle = \overline{\langle a | b \rangle}$.

$$\left\langle \psi | \mathcal{T}_{-} \psi \right\rangle = \overline{\left\langle \mathcal{T}_{-} \psi | \mathcal{T}_{-}^{2} \psi \right\rangle} = \left\langle \mathcal{T}_{-}^{2} \psi \left| \mathcal{T}_{-} \psi \right\rangle = -\left\langle \psi | \mathcal{T}_{-} \psi \right\rangle$$

This implies $\langle \psi | \mathcal{T}_{-} \psi \rangle = 0$ for an arbitrary state, thus $|\psi\rangle$ is orthogonal to $\mathcal{T} |\psi\rangle$.

	$\mathcal{T}_+^2=+\mathbb{1}$	No TRS	${\mathcal T}^2 = -\mathbb{1}$	
	$\stackrel{(\mathcal{T}_{+} \simeq K)}{\beta = 1}$	eta=2	$egin{aligned} (\mathcal{T}_{-} \simeq \sigma_{y} K) \ eta = 4 \end{aligned}$	
Laguerre	orthogonal,	1	symplectic ensembl	e
	LOE	LUE	LSE	
$ \mathcal{T} \Psi angle = \Psi angle:$	real vector	complex vector	unknown!	

Key Questions and Solutions

Q1. Possible to construct $\rho_{sys} \sim LSE$?

Q2. Beyond threefold way if general symmetries?

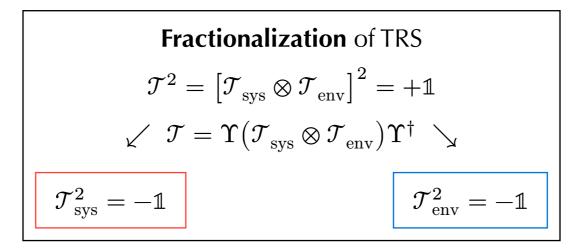
Q1. Possible to construct $|\Psi\rangle$ whose $\rho_{sys} \sim LSE$? A1. Yes, by *fractionalization* of TRS.

Q2. Beyond threefold way if general symmetries? A2. Never. Direct sum of threefold way.

1. Exploring the LSE-Realizing System

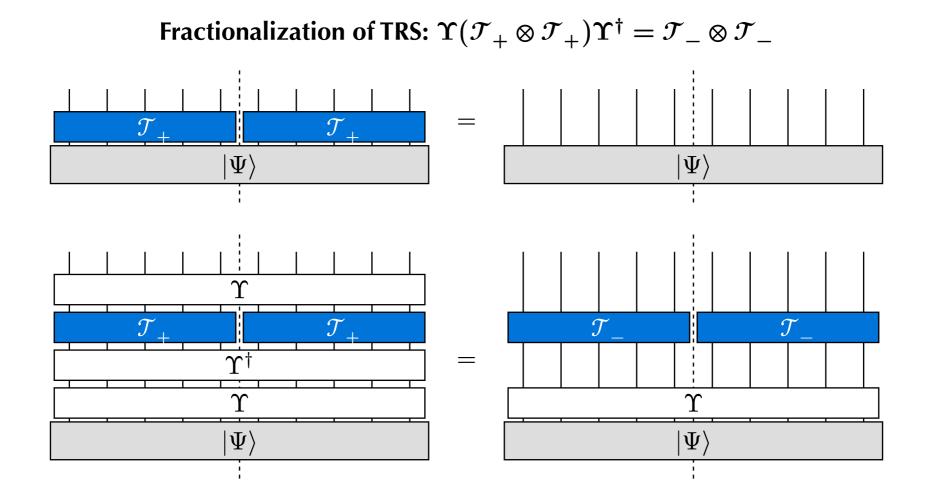
Requirement	$\mathcal{T}_+\rho_{\rm sys}\mathcal{T}_+^{-1}=\rho_{\rm sys}$	$\mathcal{T}\rho_{\rm sys}\mathcal{T}^{-1}=\rho_{\rm sys}$
Existence of pure state	Yes, $\mathcal{T}_+ \Psi\rangle = \Psi\rangle$	No, $\mathcal{T}_{-} \Psi\rangle\neq \Psi\rangle$
Pure state	real vector	???

\Downarrow



- Υ fractionalizes TRS pure state of LOE $|\Psi\rangle$.
- We found $\Upsilon = \frac{1-\mathrm{i}}{2} [\mathbbm{1}_4 \mathrm{i}\sigma_y \otimes \sigma_y]$ and proved $\Upsilon |\Psi\rangle$ follows LSE.

1. Exploring the LSE-Realizing System



• *Groups* (mathematics) describe symmetries.

Group G

Set with an assosiative multiplication. Identity and inverse exist for every elements.

- Examples: $\mathbb{Z}_m, \ \mathbb{Z}_m \times \mathbb{Z}_n, \ C_{3v}, \ Q_8, \ \mathbb{Z}_2^{\mathcal{T}}$ (TRS), ...
- Constraints to the states / operators are given by *unitary-antiunitary representations*.

Unitary-antiunitary representation D of G D(a)D(b) = D(ab)for $\forall a, b \in G$.

• Projective representations describe anomalous symmetries and (1+1)D SPT phases.

Projective representation \mathcal{D} of G $\mathcal{D}(a)\mathcal{D}(b) = \omega(a,b)\mathcal{D}(ab)$ for $\forall a, b \in G, \ \omega : G \times G \to U(1).$

 $\begin{array}{l} \textbf{Symmetry Fractionalization} \\ \forall g,g' \in G, \ D(g)D(g') = D(gg') \ (\text{regular rep}) \\ \swarrow \quad \Omega(D \otimes D)\Omega^{\dagger} = \mathcal{D} \otimes \mathcal{D}' \quad \searrow \end{array} \\ \end{array}$ $\begin{array}{l} \mathcal{D}(g)\mathcal{D}(g') = \omega(g,g')\mathcal{D}(gg') \qquad \qquad \mathcal{D}'(g)\mathcal{D}'(g') = \overline{\omega(g,g')}\mathcal{D}'(gg') \end{array}$

The eqiuvalence relation between reps is defined by phase modulation;

$$\mathcal{D}_{\rm new}(g) = e^{{\rm i}\phi(g)} \mathcal{D}(g)$$

Then, reps are classified by **2nd order group cohomology** $H^2(G, U(1))$.

• Regular reps of different classes lead to different irreducible decompositions.

• Groups can be extended by (semi)direct product.

Direct product and semidirect product of groups Direct: $G = G_1 \times G_2$, $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2)$ Semidirect: $G = G_1 \rtimes G_2$, $(a_1, a_2)(b_1, b_2) = (a_1f_{a_2}(b_1), a_2b_2)$

• Any unitary-antiunitary reps can be decomposed into a set of *irreducible reps*.

Irreducible representations

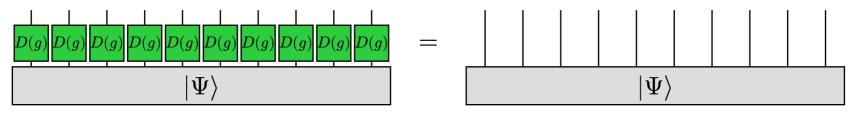
Reps for which all the elements in a unitary transformation cannot be further decomposed into direct sums at the same time are called an irreducible reps.

• *The Regular representation* can be chosen for the most natural rep.

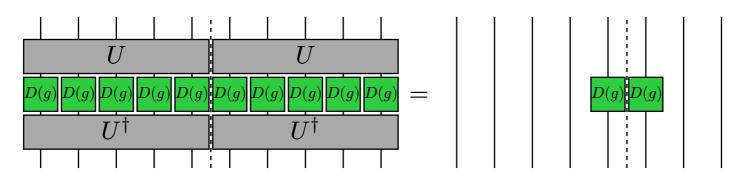
Regular representation

 $D(g) = \left[\delta\left(g_i \ g \ g_j^{-1}\right)\right] \text{ where } \delta(e) = 1 \text{ and otherwise } \delta(g) = 0$

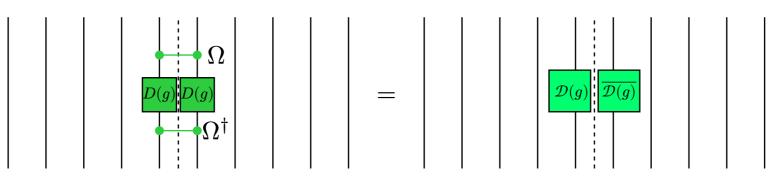
• We consider random *G*-symmetric states $|\Psi\rangle$, where $G = G_0$ or $G_0 \rtimes \mathbb{Z}_2^{\mathcal{T}}$.



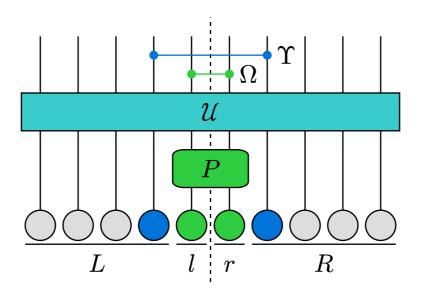
• We concentrate onsite symmetries s.t. the entanglement spectrum is not changed.



• Fractionalization of G_0 by Ω can be done independently of $\mathbb{Z}_2^{\mathcal{T}}$.



General Setup



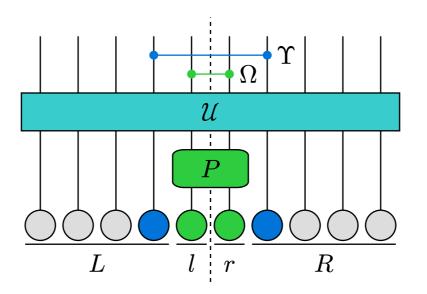
The considered symmetries are $G = G_0$ or $G_0 \rtimes \mathbb{Z}_2^{\mathcal{T}}$ (G_0 : unitary, $\mathbb{Z}_2^{\mathcal{T}}$: anti-unitary).

- G_0 : Green circles.
 - ► $l, r: |G_0|$ -dimensional qudit (Finite. The regular rep of $G_0: \langle g | g' \rangle = \delta_{g,g'}$)
 - ▶ *P*: Projection of $|G_0|^2$ -dim space $l \cup r$ onto G_0 -symmetric $|G_0|$ -dim basis below:

$$\forall g \in G_0, \ \left|\psi_g\right\rangle = \frac{1}{\sqrt{|G_0|}} \sum_{h \in G_0} |hg\rangle |h\rangle. \quad \left(D(g) \otimes D(g) \middle|\psi_g\right\rangle = \left|\psi_g\right\rangle\right).$$

• $\mathbb{Z}_2^{\mathcal{T}}$: Blue circles = 2-dimensional cuts of each subsystem (only when Υ is necessary).

General Setup

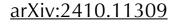


• **Randomness**: $\mathcal{U} \sim$ Haar measure on the projected $d_L d_R |G_0|$ -dimensional space:

$$|\Psi\rangle = \sum_{L,g \in G_0,R} c_{L,g,R} |L\rangle |\psi_g\rangle |R\rangle = \frac{1}{\sqrt{|G_0|}} \sum_{L,g_l,g_r,R} c_{L,g_r^{-1}g_l,R} |L\rangle |g_l\rangle |g_r\rangle |R\rangle$$

• **Fractionalization**: Ω fractionalizes G_0 , Υ fractionalizes $\mathbb{Z}_2^{\mathcal{T}}$:

$$\Omega = \sum_{g_l,g_r} \omega\big(g_r,g_r^{-1}g_l\big)|g_l,g_r\rangle\langle g_l,g_r|, \ \Upsilon = \frac{1-\mathrm{i}}{2}\big(\mathbbm{1}_4-\mathrm{i}\sigma_y\otimes\sigma_y\big).$$



Results and Conclusion

Direct Sum into the Threefold Way

Entanglement-spectrum statistics of $G = G_0$ is

$$\bigoplus_{\alpha} \left[\frac{\mathbbm{1}_{d_{\alpha}}}{d_{\alpha}} \otimes \mathbf{LUE}_{\alpha}^{d_{L}d_{\alpha} \times d_{R}d_{\alpha}} \right],$$

On the other hand, that of $G = G_0 \rtimes \mathbb{Z}_2^{\mathcal{T}}$ is

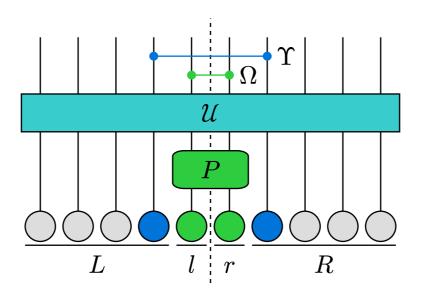
$$\left[\bigoplus_{\alpha:R_{+}}\frac{\mathbb{1}_{d_{\alpha}}}{d_{\alpha}}\otimes\mathbf{LOE}_{\alpha}^{d_{L}d_{\alpha}\times d_{R}d_{\alpha}}\right]\oplus\left[\bigoplus_{\alpha:R_{0}}\frac{\mathbb{1}_{2d_{\alpha}}}{d_{\alpha}}\otimes\mathbf{LUE}_{\alpha}^{d_{L}d_{\alpha}\times d_{R}d_{\alpha}}\right]\oplus\left[\bigoplus_{\alpha:R_{-}}\frac{\mathbb{1}_{d_{\alpha}}}{d_{\alpha}}\otimes\mathbf{LSE}_{\alpha}^{d_{L}d_{\alpha}\times d_{R}d_{\alpha}}\right]$$

Entanglement-spectrum statistics of random symmetric states is

always able to be decomposed into the direct sum of the threefold way¹.

¹This result is also the Laguerre version of Dyson's Gaussian threefold way (1962).

Conclusion



Until our work

• The setup which follows LSE have been elusive.

What this work reveraled are:

- The LSE setup can be constructed by fractionalizing TRS of the LOE setup.
- Extended the setup to general symmetries.
- Entanglement-spectrum statistics is **direct sum of the threefold way.**

References

Nechita, I. (2007) "Asymptotics of random density matrices," in Annales Henri Poincaré, pp. 1521–1538

Page, D. N. (1993) "Average entropy of a subsystem," *Phys. Rev. Lett.*, 71(9), pp. 1291–1294. Available at: https://doi.org/10.1103/PhysRevLett.71.1291

Sen, S. (1996) "Average Entropy of a Quantum Subsystem," *Phys. Rev. Lett.*, 77(1), pp. 1–3. Available at: https://doi.org/10.1103/PhysRevLett.77.1

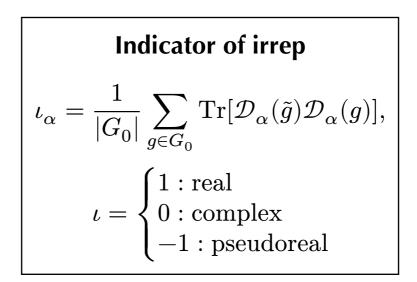
Sánchez-Ruiz, J. (1995) "Simple proof of Page's conjecture on the average entropy of a subsystem," *Phys. Rev. E*, 52(5), pp. 5653–5655. Available at: https://doi.org/10.1103/PhysRevE.52.5653

Zyczkowski, K. and Sommers, H.-J. (2001) "Induced measures in the space of mixed quantum states," *Journal of Physics A: Mathematical and General*, 34(35), p. 7111

Supplemental Materials

Some additional information on group reps

- An irrep is either one of *real*, *complex*, *or pseudoreal*.
- We consider the cases $G = G_0$ or $G_0 \rtimes \mathbb{Z}_2^{\mathcal{T}}$.
- For $G = G_0 \rtimes \mathbb{Z}_2^{\mathcal{T}}$, one can define *the indicator* to know irreps real, complex, or pseudoreal.



The cocycle (=cohomology class) can be decoupled $\omega = \omega_{G_0} \omega_{\mathbb{Z}_2^{\mathcal{T}}}$.

• R_{\pm} = set irreps that satisfies $\iota = \pm \omega(t, t)$. $\omega(t, t) = 1(-1)$ in the absent (present) of Υ .